If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23n^2+n-100=0
a = 23; b = 1; c = -100;
Δ = b2-4ac
Δ = 12-4·23·(-100)
Δ = 9201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{9201}}{2*23}=\frac{-1-\sqrt{9201}}{46} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{9201}}{2*23}=\frac{-1+\sqrt{9201}}{46} $
| 7x/11+4=58/11 | | -363=-12-13v | | 20=-3b+16-2 | | 11n-6=-237 | | -14=3p-10p | | n+9+9=16 | | -9n+12=57 | | d-56=137 | | x+x28=180 | | 4x+2x+3x+x=360 | | x+45+5x+3x=180 | | 4x+x+20+3x=180 | | 55=w(6+w) | | 11+6p=77 | | x+31+x=90 | | (9x+20)+110=110 | | 5/6e=6/7 | | -7x^2+8=183 | | 1.5x=4.50 | | 6x+19=7x+16 | | 2a+3=4a-9 | | 9x-19=145 | | 9x+19=145 | | 90/100=z/10 | | 3i(11+6i)=0 | | 9p+12=60 | | 8p+18=60 | | 2x+72+8x=90 | | 4a+20=24 | | d1/8=6*8 | | 6+17u=-15=14u | | -3x-4x-17=25 |